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This note has two aspects. The first concerns comparisons between the theoretical 
predictions of Smith (19793) and the calculations of Fornberg (1980) for flow past 
a circular cylinder: there is quite good agreement overall, in such quantities as the 
drag, the front stagnation point pressure, the eddy pressure and the skin friction. The 
second aspect concerns comments and reservations on the calculat,ed eddy lengths 
and discrepancies a t  higher Reynolds numbers. 

1. Text 
This note has two intentions : first, to compare the theoretical predictions of Smith 

(1979b) with the recent calculations of Fornberg (1980), referred to hereinafter as 
S and F, respectively ; and secondly, to  point out certain reservations concerning F’s 
calculations. The notation of S is adopted here, with the Reynolds number R( = 2Re) 
based on the cylinder diameter. 

Almost all aspects of F’s results for a circular cylinder up to R = 300 are in line 
with the S theory for flow past a. bluff body. These aspects include the eddy pressure, 
the front stagnation point pressure, the drag C ,  and the skin friction, as the com- 
parisons in figures 1-4 show ; similar agreement can be shown to hold for the entire 
surface pressure (S, figure 4). Thus, in particular, the last C ,  value, a t  R = 300, of 
P’s table 6 falls exactly on S’s curve (S, figure J l b  or present figure 1). F’s front 
stagnation point pressure of 0.51 (F, table 4) a t  R = 300 compares with S’s prediction 
of 0.510 (equation (2.27) of S, and present figure 2).  F’s eddy, or rear stagnation 
point, pressures of 0.17 and 0.09 (F, table 4) a t  R = 100, 300respectively compare 
with S’s predictions of 0.194 and 0.112 respectively (S, figure 10; present figure 3): 
see also Dennis & Chang (1970). 

On those scores then there is good, even encouraging, agreement. While, as has 
been noted (S), the theory has still to be completed, if it can be, with regard to  the 
reattachment process, the agreements observed above add further weight to  the 
findings of Smith (1979a), Smith & Duck (1980) and Smith & Daniels (1981), thatis, 
that  extended Kirchhoff theory provides a correct limiting solution for the grossly 
separated laminar flow of an incompressible fluid as R -+ 03. Their limiting studies 
do have firm theoretical grounding with regard to the reattachment process. 

There is also not unreasonable agreement with F’s results for the eddy length 1 
(S’s figure 8;  F’s figure 17; present figure 5)  except for one curious feature: F’s 
results seem to show a rather excessive int.erna1 discrepancy, when tested between 
the crude and finer numerical grids (F figure 12),  such that 1 is given as approximately 
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FIGURE 1. Comparison between the prediction in S (-) for C D  ( S ,  figure 11 b )  and F’s numerical 
results (X), for R up to 300. The leading-order prediction Limit 1 is the Kirchhofflimit C D  = CD, 
= 0.50, whereas Limit 2 is the prediction CD = 0.50(1+7.61 R-4) including the higher order 
re-scaling effect of the eddy pressure and the friction drag. An O(R-i%) correction term is omitted 
since it is tiny in practice (S). 
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FIGURE 2. Comparison between the prediction in S (-) for the front stagnation point pressure 
pmP (S, figure 2 )  andF’snumerica1 results (x) for R up to 300. The prediction (-) is 2pFeP - 1 = 
5*692/R to leading order. 

32.9 on one grid in F figure 12 ( e )  and as approximately 27.5 on the other in F figure 
12(f), even at  R = 200. The discrepancy is therefore greater than 16% then. No 
corresponding tests are shown by F for R > 200 (only a minor test is applied then) 
and indeed only one set of results for 1 is shown in F figure 17 for all R. We show 
more in the present figure 5, which indicates a fairly favourable comparison overall 
with the theory in S. It would be interesting to know, however, whether a possible 
decrease of 1 for R > 290 (approximately) does occur, as the numerical results so far 
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FIGURE 3. Comparison between the prediction in S (-) for the eddy pressure (S, figure 10) and 
F’s numerical results (x), for R up to 300. Also shown are results from Dennis & Chang (1970) 
(0). The prediction (-) is from S’s (3.26),  (3.16), with Go, = 0,50, Re = +R, and is 2 p,,,,, = 
- 3.88 R-4 to leading order. 
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FIGURE 4. Comparison between the prediction in S (-) (S, figure 3) for the skin friction 7 
versus distance 0 from the front stagnation point and F’s numerical results + , x (F, figure 15), 
for R = 100, 300 respectively. The prediction Limit is for the limit R --f co, whereas the predictions 
Limit 100, Limit 300 for R = 100, 300 include the higher order but important effects of the eddy 
pressure. 

might be taken to suggest, or if it is merely a numerical rather than a genuine feature. 
For, according to the 16% or more numerical discrepancy at  R = 200, the eddy 
length is clearly a very sensitive quantity to determine computationally (see also 
next paragraph) and is the only main one t,o exhibit any significant deviations from 
the predicted trend of S, and just at  the very largest values of R attainable in 
F’s computations. Again, there is no corresponding deviation in C, (figure 1)  which 
would seem necessary (S) for a theory incorporating a shorter eddy length for R -+- 00, 

while the behaviour of the eddy vorticity emphasized by F is not inconsistent with 
the S theory, given the apparent sensitivity of the eddy-length results. In view of all 
this and especially the 16% numerical discrepancy noted above we feel that, at  least 
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FIGURE 5. Comparison between the prediction in S (-) for the eddy length I (S, figure 8) and 
F’s various numerical results ( 0 )  (F, figure 12, 13a-c, 17) for R up to 300. The prediction - 
has slope dljdR = 0.17 to leading order. 

until the calculations have been systematically checked, reservations about F’s 
results for the eddy length, if nothing else, are inevitable. 

For the purposes of comparison we observe the effects of systematic checking, on 
refined grids, in the computational work by Dennis & Smith (1980) on separating 
flow. Their table 1 (their p. 404) gives the eddy length L, versus Reynolds number R, 
calculated on four increasingly refined grids, in the flow ahead of a forward-facing 
step in a channel. The grid refinement becomes ever more necessary as R increases and 
only with the refinement applied can L, be determined accurately. The accurate 
values of L, then agree well with the asym9totic theory, as their figure 2 shows, 
whereas the agreement diminishes significantly if the values obtained on cruder grids 
are taken instead. The analogy and contrasts between their sets of results and F’s, 
the latter using essentially just two grids for R 6 200 and only one grid for R > 200, 
and the resultant comparisons with asymptotic theory, are rather striking. 

The comments of Professor K. Stewartson, Professor D. G. Crighton and Dr B. 
Fornberg are gratefully acknowledged. 
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